
Supply Chain Visibility & Risk Study
Edition 2: Containers; Q4 2024

Executive Summary: Overview and Key Findings

All companies rely on software to power their business. However, software development pressures
and the corresponding enterprise software sprawl is driving up software supply chain risks. These
risks are much greater than most security professionals understand. In fact, the software risk data
most rely on today is only the tip of the iceberg and misses many of what should be considered the
highest priority software risks that exist in the enterprise.

Containers are driving a growth of cloud-native technologies, fundamentally changing how many
modern applications are designed, deployed, and managed. In fact, containers are the fastest growing
- and weakest cybersecurity link - in software supply chains. And while they are considered lightweight
and simple, containerized software / images are much more complex than commonly understood
and they are introducing numerous risks and security challenges that require new solutions and skills
to mitigate efficiently.

netrise.io | sales@netrise.io
Copyright © 2024 NetRise, Inc.

Key Findings and Recommendations

1 | Containers May Be Considered ‘Lightweight’ - But They Are Much More Complex
Than Most Think

•	 Using a compiled and interpreted code analysis approach, we analyzed 70
randomly selected container images from 250 of the most commonly
downloaded images on Docker Hub and generated detailed SBOMs. On
average, within each container image we found 389 software components.

•	 Understanding containerized software and associated risks starts
with the foundational step of getting visibility into the software itself.
Containerized software, no matter how reputable the repository, is
quite complex and poses risks. It’s critical that those who build, buy,
use, and maintain the container software can inventory and understand
the scope and scale of their container images.

Supply Chain Visibility & Risk Study

Edition 2: Containers; Q4 2024

2netrise.io | sales@netrise.io
Copyright © 2024 NetRise, Inc.

2 | You Can’t Rely on Container Manifests - New Visibility Methods are Needed

•	 We find that 12.4% (or 1 in 8) of the 27,261 components have no software manifest - they are
“manifestless”. This means these components lack the formal metadata typically found in
manifests and that they don’t include details about dependencies, version numbers, or the source
of the package.

•	 The presence of these manifestless components poses a significant challenge for software visibility,
security, and compliance. This also means that common / traditional container scanning tools
that rely on manifests for analysis, will have big visibility gaps when reporting results unbeknownst
to the user. This suggests a need for new processes and tooling required for tracking and auditing
containerized software and to properly mitigate the associated risks.

3 | Container Risks Are Much Higher Than Commonly Understood

•	 We find that the average container has 604 known vulnerabilities in the underlying software
components, with over 45% of them being more than 2 years old and some even more than 10 years
old. Further, of the 16,557 identified CVEs that had a Critical or High CVSS Severity ranking, 691 (or
4.2%) were found to be weaponized vulnerabilities per NetRise’s threat intelligence. “Weaponized
vulnerabilities” as a category include vulnerabilities present in the CISA KEV catalog, those known
to be used by botnets, to spread ransomware, used by threat actors, or used in known attacks.

•	 In addition, another cybersecurity concern are some of the non-CVE risks. We found 4.8
misconfigurations per container including 146 “world writable and readable directories outside
tmp”. Lastly, the containers had overly permissive identity controls with, on average, 19.5 usernames
per container.

netrise.io | sales@netrise.io
Copyright © 2024 NetRise, Inc.

Supply Chain Visibility & Risk Study

Edition 2: Containers; Q4 2024

3

Introduction and Purpose

Introduction - Containers are the Weakest Link

Containers are the fastest growing - and weakest cybersecurity link - in software supply chains.

All companies rely on software to power their business, to connect with customers and partners, to
automate back-office processes, and to build market presence. Today’s world is built on software –
3rd party software, open source software, in-house developed software, operating system software,
applications, containers, and device firmware to name a few.

Today, much of that application software exists in the form of containers. Containers have revolutionized
the way we develop, deploy, and manage applications. In less than a decade, containers have grown
from a lightweight virtualization technology, to the standard for software distribution, to a powerful
underlying platform for complex and distributed applications. Containers have driven the growth of
cloud-native technologies, fundamentally changing how many modern applications are designed,
deployed, and managed.

In fact, a recent VentureBeat article states that “Gartner predicts that by 2029, more than 95% of
enterprises will be running containerized applications in production, a major jump from less than 50%
last year. In five years, 35% of all enterprise applications will run in containers, and more than 80% of
commercial off-the-shelf (COTS) vendors will offer their software in container formats, up from less
than 30% last year.”1

The article goes on to say that containers and their orchestration platforms are dominating DevOps
and DevSecOps across enterprises creating cloud apps, and it’s going to accelerate.

However, this increasing reliance on containerized applications comes with 2 key cybersecurity
challenges:

1.	 The need to maintain visibility of the detailed software components in containers and their
provenance.

2.	 The need to identify and prioritize vulnerabilities and risks within the containers’ components.

netrise.io | sales@netrise.io
Copyright © 2024 NetRise, Inc.

Supply Chain Visibility & Risk Study

Edition 2: Containers; Q4 2024

4

Cyber adversaries know there is a growing container software supply chain visibility and risk challenge.
In fact, software supply chain attacks have seen triple-digit increases, but far too few organizations
have taken steps to evaluate the risks of these complex attacks in their software supply chain.

Many companies assume that the containerized software they acquire, catalog, build, deploy, and
run is secure and free from vulnerabilities and risks, but recent high-profile software supply chain
breaches have proven otherwise. The reality is that every piece of software, no matter how trusted the
source or the repository poses risks. This is where the principle of "trust but verify" becomes crucial.
Blind trust in software can lead to devastating consequences, from data breaches to operational
disruptions.

In fact, Kelsey Hightower from Google presents a fantastic comparison that illustrates the point -
he compares today’s practice of pulling code from GitHub repositories to the unimaginable act of
plugging a random USB key discovered at a coffee shop into your laptop.3

His point - visibility matters.

Comprehensive visibility into all containerized software
components and dependencies is an essential starting point for
software supply chain detection and response.

According to Capterra’s “2023 Software Supply Chain Survey”, 61%
of companies have been impacted by a software supply chain cyber
attack in the 12 months prior to the survey.2

netrise.io | sales@netrise.io
Copyright © 2024 NetRise, Inc.

Supply Chain Visibility & Risk Study

Edition 2: Containers; Q4 2024

5

Containerized applications are one of the weakest links in software supply chains. Companies
are struggling to get container security right. Issues from misconfigured clouds, containers, and
networks; to uncertainty over container security throughout the software’s lifecycle persists. And cyber
attackers, insiders, and nation-state actors are capitalizing on the disconnects by exploiting growing
vulnerabilities in container images, runtimes, API interfaces and container registries. Unsecured
containers with light identity security, if any at all, are a goldmine for insider attackers, too.

Purpose

The purpose of this NetRise “Software Supply Chain Research Study” is to get beyond the marketing
reports and state of the market reports, and look at actual software compositions, vulnerability risks,
and non-CVE risks that exist in different asset classes that are in every business’s software supply chain.

“A lot of you are like, he is crazy; he is picking up a random USB key, sticking it in his laptop
and sending it to production. Y’all act like y’all don’t have GitHub accounts! [Laughter] Y’all are
literally doing this every day! And it’s actually becoming a critical problem.”

The objective is to educate and inspire CISOs, security professionals,
and procurement teams to understand the scope and scale of
software and it's risks that likely exist within their software supply
chains and to take proactive steps to securing their supply chains.

netrise.io | sales@netrise.io
Copyright © 2024 NetRise, Inc.

Supply Chain Visibility & Risk Study

Edition 2: Containers; Q4 2024

6

Scope and Methodology

Research Scope

Containers are the fastest growing - and weakest cybersecurity link - in software supply chains.
With that backdrop, this NetRise “Software Supply Chain Risk Study” looks at 70 randomly selected
container images from of the 250 most commonly downloaded images on Docker Hub.

And these enterprise class container images represent a vital component of enterprise software supply
chains whether developed and used internally or acquired. And vulnerabilities within these container
images can have far-reaching consequences. The scope of this research includes a comprehensive
analysis of the software embedded in these containers leveraging the leading compiled code analysis
capabilities of the NetRise Platform.

By analyzing the software and reporting on the vulnerabilities and risks associated with common
container images, this report hopes to underscore the urgent need to prioritize software supply chain
security.

While containers have revolutionized the way we develop, deploy, and manage software applications,
when these container images aren’t secure, attackers can quickly move beyond the initial intrusion
and breach entire networks and infrastructures.

And according to the Achore Software Supply Chain Security Report, the scale of the problem continues
to grow as 88% of enterprises plan to continue expanding their container adoption over the next 24
months with 31% planning to increase use significantly. 4

Research Methodology

The research methodology employed for this report is designed to provide a detailed and holistic
understanding of the software components and software risks associated with each containerized
application. The following steps outline the research process:

1.	 Software Bill of Materials (SBOM) Analysis:
Objective: Gain complete visibility into the components that constitute the software running within
each container.

netrise.io | sales@netrise.io
Copyright © 2024 NetRise, Inc.

Supply Chain Visibility & Risk Study

Edition 2: Containers; Q4 2024

7

Process: Use the NetRise Platform to generate detailed SBOMs for each container. This involves
identifying all software components, including third-party libraries and dependencies (both direct
and indirect), to understand the complete software stack.

2.	 Vulnerability and Non-CVE Risk Assessment:
Objective: Evaluate the risk state of each container, considering both known vulnerabilities (CVEs)
and non-CVE risks.
Process: Use the NetRise Platform to identify vulnerabilities listed in the CVE database, and non-
CVE risks, such as misconfigurations, outdated components, and potential security flaws that are
not yet publicly disclosed.

3.	 Evaluate the Priority of Identified Vulnerabilities:
Objective: Stratify vulnerabilities based on CVSS scores, weaponization, and network accessibility.
Process: Use the NetRise Platform to identify weaponized vulnerabilities that are actively being
exploited in the wild, and those that are also network accessible to narrow the list of priority
vulnerabilities.

Current State of the Market

Market Research and Statistics

Security teams struggle to respond to vulnerabilities, especially where that vulnerability is included
within embedded software dependencies. Because software components have not been traditionally
disclosed, their content is often opaque to teams trying to ascertain whether they are affected. This
requires extraordinary work to identify affected software and implement risk mitigations.

According to a recent Ponemon study, only 29% of organizations are conducting post-build software
dependency/artifact analysis to prevent malicious packages from impacting the software they build,
buy, or use.5 And only 38% of respondents say budget and staffing dedicated to securing the software
supply chain is sufficient or very sufficient.5

These software supply chain vulnerabilities and non-CVE risks extend to containerized software as well.
In the “2024 Kubernetes Benchmark Report: The Latest Analysis of Kubernetes Workloads” published
by the Cloud Native Computing Foundation, 28% of organizations have more than 90% of workloads
running in insecure Kubernetes configurations. The majority of workloads, more than 71%, are running
with root access, increasing the probability of system compromises and sensitive data being exposed.6

netrise.io | sales@netrise.io
Copyright © 2024 NetRise, Inc.

Supply Chain Visibility & Risk Study

Edition 2: Containers; Q4 2024

8

The lack of transparency and trust within the global software supply chain has emerged as a critical
issue for organizations - and containerized software is no different. It’s well understood that modern
application development increasingly relies on open-source and, sometimes, commercially licensed
third-party libraries. Thus, transparency into the contents of containers is essential to properly
evaluate and vet the contents of the software against organizational standards for supply chain and
operational risks. A failure to do so leaves organizations open to:

•	 The presence of unknown software risks in the form of unremediated and/or unmitigated
vulnerabilities within the organization’s software supply chain.

•	 Potential legal risks resulting from onerous or unattractive licensing terms and conditions
associated with dependencies that may be inherited by the ultimate end user of the application.

•	 Operational and supply chain risks including factors such as the presence of significant technical
debt in licensed software or software lacking appropriate security controls and checks.

The transparency required to effectively address and avoid such issues starts with the SBOM. In its
most basic form, and like other bills of materials, SBOMs list the individual software components —
open source, commercial, and (in some cases) proprietary — utilized in the creation of a containerized
application. But while SBOMs are considered a best practice and critical to having a secure software
supply chain, only 35% of respondents say their organizations produce or generate SBOMs.5

And for containerized software, only 39% of mature container users are currently creating SBOMs for
the software they build and only 30% are using SBOMs for open source software they use according
to a survey conducted by Anchore.4

Lastly, a detailed understanding of the software within an organization, can be critical to timely cyber
attack investigation, response, and remediation. But only 38% of organizations say they are very or
highly effective in detecting and responding to an attack on a software vulnerability. And almost half
(47%) say it takes at least a month to more than 6 months to respond to a critical software vulnerability.5

Market Trends

The industry is however, beginning to make progress in software supply chain security and risk
management including software that is containerized. This progress is being driven by several factors,
including:

netrise.io | sales@netrise.io
Copyright © 2024 NetRise, Inc.

Supply Chain Visibility & Risk Study

Edition 2: Containers; Q4 2024

9

Containers are Higher Risk Than Traditional Apps
Containers have massively changed software infrastructure for many accompanied by a major
increase in overall complexity (although much of it is hidden from developers thanks to multiple layers
of abstraction and convenient tools). The increase in complexity has introduced numerous new risks
and security challenges and new skills are needed to mitigate them efficiently.

These factors show up in a survey conducted by Anchore in which intermediate and advanced
container users see containers as having higher risk than traditional applications (31 percent vs 23
percent).4 As users leverage containers more, they may be more likely to understand risks such as
typosquatting and dependency hijacking that can impact containers.

Increasing Software Supply Chain Cyber Threats
Containerized software, much like other software and firmware have become prime targets for cyber
attackers. As noted earlier, containers are ripe targets for cyber attackers, insiders, and nation-states
alike. And attackers are exploiting vulnerabilities in the DevOps process at an alarming rate, often
using them as entry points for broader compromises​​.

Regulatory and Compliance Pressures
Governments and regulatory bodies are implementing stricter regulations to ensure the security of
software supply chains. Compliance with standards such as the White House issued Executive Order
14028 mandating the presentation of a SBOM, and the European Union’s Cyber Resilience Act (CRA)
is becoming mandatory for many organizations. There is also a growing emphasis on the use of
SBOMs to enhance transparency and security.

Technological Advancements
Organizations are increasingly adopting advanced software supply chain analysis and security tools
for advanced risk management programs. These security tools provide:
•	 Detailed SBOM development for all software including embedded firmware, operating systems,

virtualization software, containers, and applications.
•	 Detection of vulnerabilities and non-CVE risks associated with all of the SBOM software components

in use.
•	 Prioritization of all identified software supply chain risks.

Information from these tools can then enrich and feed asset discovery and management tools and
intrusion detection tools used within security operations.

netrise.io | sales@netrise.io
Copyright © 2024 NetRise, Inc.

Supply Chain Visibility & Risk Study

Edition 2: Containers; Q4 2024

10

Software Bills of Materials Analysis for Containers

Below we look at a summary of the software analysis for the 70 Docker Hub container images
analyzed. We look at the number of software components per container, the number of manifestless
components, and the number of different versions of some of the most common components in use.

Average Number of Software Components per Container

For the 70 images analyzed, each container had on average 389 software components.

Most Commonly Occurring Software Components

For the 70 container images analyzed, there were a total of 27,261 software components.

Excluding the Linux kernel software, the most common components based on how many of the 70
containers they were found in, are listed in the table below. In addition, we show how many different
versions of each were found.

Component Name Number of Containers it's
Found In Percentage Unique Component

Versions

openssl 69 98.6% 7

zlib 68 97.1% 6

bash 51 72.9% 10

prc-tools-arm 47 67.1% 1

coreutils 42 60.0% 6

findutils 42 60.0% 4

gzip 42 60.0% 3

glibc 41 58.6% 1

openldap 41 58.6% 1

gnutls 38 54.3% 1

netrise.io | sales@netrise.io
Copyright © 2024 NetRise, Inc.

Supply Chain Visibility & Risk Study

Edition 2: Containers; Q4 2024

11

Distribution of Component Types

For the 70 images analyzed, there were 27,261 software components found or an average of 389
components per container image. And if we look at unique versions of the components, then we find
that there are a total of 2,992 different component name/version combinations in the 70 container
images. Below we break out these total components by type.

Manifestless Container Components
In looking at the total container components found by type, we see that 3,390 of the 27,261 components
are manifestless, or 12.4%. This means 1 in 8 of all container components are lacking the formal
metadata typically found in packages with manifests. This means they don’t include details about
dependencies, version numbers, or the source of the package.

What’s worse, the vast majority of container scanning tools rely on the manifest information to provide
visibility into what exists in the container. Without it, both the scanning tools and software users are
blind to what’s included.

The presence of such a large percentage of manifestless components poses a significant challenge

Components by Type Total Component Count Unique Component Count

Maven 11,026 1,845

OS 9,951 557

Manifestless 3,390 313

NPM 1,809 186

PYPI 918 64

Golang 147 25

Windows 20 2

Total 27,261 2,992

Average / Container 389 43

netrise.io | sales@netrise.io
Copyright © 2024 NetRise, Inc.

Supply Chain Visibility & Risk Study

Edition 2: Containers; Q4 2024

12

for visibility, security, and compliance.
This suggests a need for enhanced
tracking and auditing processes to
mitigate associated risks, as well as
possibly reconsidering the sources of
these components to reduce reliance on
components without manifests.

Average Component Dependencies

For the 70 images analyzed and the different types of components found above, we analyzed the
direct and indirect dependencies for each component.

Direct dependencies are libraries or packages that a component directly relies on to function. This
average provides insight into how complex each component type is in terms of its immediate
dependencies.

Indirect dependencies are packages or libraries that a component relies on through other dependencies.
Higher indirect dependencies can indicate complex dependency chains, which may increase the
potential for security vulnerabilities or version conflicts.

Component by Type Average Direct Dependencies Average Indirect Dependencies

Maven 3.45 3.05

OS 2.67 93.15

Manifestless 7.00 15.49

NPM 2.06 11.46

PYPI 0.97 0.48

GOLANG 0.80 -

Windows - -

netrise.io | sales@netrise.io
Copyright © 2024 NetRise, Inc.

Supply Chain Visibility & Risk Study

Edition 2: Containers; Q4 2024

13

CVE-Based Vulnerability Risk Assessment Analysis

Below we look at a summary of the vulnerability analysis for the 70 container images analyzed. We look
at the number of CVEs per container, the CVE CVSS scores, the number of weaponized vulnerabilities,
and the age of different CVEs.

Average Number of CVEs per Container

For the 70 container images analyzed, each container had on average 604 CVEs. There were 42,247
total CVEs found in the 70 container images.

CVEs by CVSS Severity

Of the 42,247 uniquely identified CVEs, 40.9% ranked Critical or High per the CVSS Severity scores.

Weaponized Vulnerabilities (Total and by CVSS Severity)

Of the 16,557 identified CVEs that had a Critical or High CVSS Severity ranking, 691 (or 4.2%) were
found to be weaponized vulnerabilities per NetRise’s threat intelligence.

netrise.io | sales@netrise.io
Copyright © 2024 NetRise, Inc.

Supply Chain Visibility & Risk Study

Edition 2: Containers; Q4 2024

14

“Weaponized vulnerabilities” as a category include vulnerabilities present in the CISA KEV catalog,
those known to be used by botnets, to spread ransomware, used by threat actors, or used in known
attacks.

Containers with Weaponized Vulnerabilities

Forty four percent (44%) of the 70 containers analyzed had at least one vulnerability that is on the
CISA KEV, had vulnerabilities used by botnets, or had vulnerabilities known to be used for spreading
ransomware. Additionally, 55% had vulnerabilities used by known threat actors.

The weaponized vulnerability metric is an important threat source because it can be used to identify
what known exploitable vulnerabilities exist within the container or enterprise environment which
provides a focused list on where to prioritize remediation efforts.

netrise.io | sales@netrise.io
Copyright © 2024 NetRise, Inc.

Supply Chain Visibility & Risk Study

Edition 2: Containers; Q4 2024

15

Unique Vulnerabilities by EPSS Score

We next look at the EPSS Score for each vulnerability. The EPSS allows companies to prioritize the
most pressing vulnerabilities with threat actor information and a probabilistic understanding of threats.
The EPSS, developed by the Forum of Incident Response and Security Teams (FIRST) leverages
current, real-world exploit and threat information from many sources to estimate the probability of a
vulnerability being exploited in the next 30 days. 7

Be aware that EPSS Scores are temporal meaning they can change over time. So the data below
represents a snapshot of the data from the day the research was generated.

Below we categorize the CVEs by the EPSS Score for the 42,247 CVEs in the 70 container images.

Total Vulnerabilities Categorized by Age

If we look at the same 42,247 CVEs in the 70 container images, we find that 45.1% of the CVEs are
over 2 years old and 7.9% over 5 years old. Below we categorize the CVEs by age.

EPSS Score Unique Vulnerability Count

above .90 230

between .80 and .90 96

between .60 and .80 0

between .20 and .60 145

below .20 41776

Age CVE Count

10+ years old 527

5-10 years old 2,792

2-5 years old 15,721

1-2 years old 18,370

6 months to 1 year old 4,827

3-6 months old 9

netrise.io | sales@netrise.io
Copyright © 2024 NetRise, Inc.

Supply Chain Visibility & Risk Study

Edition 2: Containers; Q4 2024

16

Non-CVE Based Risk Assessment Analysis

Below we look at a summary of the non-CVE risk analysis for the 70 container images analyzed.

Average Number of Misconfigurations per Container

For the 70 container images analyzed, each container image had on average 4.8 misconfigurations.

Most Common Misconfigurations

The most common misconfigurations based on type and how many occurrences were found in the 70

container images analyzed, are listed in the table below

Average Unique Usernames per Container

For the 70 container images analyzed, each container image had on average 19.5 unique usernames.
This suggests a potentially high-risk environment with a broad attack surface and increased complexity
in managing access and credentials.

Misconfiguration Type Occurrences

World writable and readable directories outside tmp 146

Weak hash algorithms found 101

Insecure URL 54

One or more compilers exist 46

Services Without Configuration Files 43

netrise.io | sales@netrise.io
Copyright © 2024 NetRise, Inc.

Supply Chain Visibility & Risk Study

Edition 2: Containers; Q4 2024

17

Summary

Today’s world is built on software – 3rd party software, open source software, in-house developed
software, operating system software, applications, containers, and device firmware to name a few.
Today, much of that application software exists in the form of containers which have revolutionized
the way we develop, deploy, and manage applications. In this research we looked at a detailed analysis
of the software in 70 of the most common containers from Docker Hub.

Software Bills of Materials Analysis: Using the detailed software analysis in the NetRise Platform, we
find that the SBOM for the average container is more complex than many might believe and contains
389 software components.

Vulnerability Risks Analysis based on a Detailed Software Analysis Approach: Using the detailed
software analysis in the NetRise Platform, we find that the average container has 604 known
vulnerabilities with 40.9% of these ranked Critical or High CVSS Severity. Further, over 4% of these
Critical and High CVEs are considered weaponized based on NetRise threat intelligence.

Analysis Methodology and Approach: First, every piece of software, no matter how reputable the
source or the repository, is quite complex and poses risks. Second, it’s critical that those that build, buy,
use, and maintain the software can inventory and understand the scope and scale of their software,
and the associated risks. We believe a deep analysis of the software using a compiled and interpreted
code analysis is the only way to get to this information.

End Notes

1.	 “10 reasons why securing software supply chains needs to start with containers”, VentureBeat,
January 29, 2024.

2.	 Three in Five Businesses Affected by Software Supply Chain Attacks in Last 12 Months, Gartner/
Capterra, May 11, 2023.

3.	 "The Secure Software Supply Chain", by Kelsey Hightower, Strange Loop 2022.
4.	 “2022 Software Supply Chain Security Report”, Anchore, 2022.
5.	 The State of Software Supply Chain Security Risks, Prepared by Ponemon Institute, Sponsored by

Synopsis, May 2024
6.	 “2024 Kubernetes Benchmark Report: The Latest Analysis of Kubernetes Workloads”, Cloud Native

Computing Foundation, January 26, 2024.
7.	 “Using EPSS to Modernize Vulnerability Prioritization”, NetRise Blog.

netrise.io | sales@netrise.io
Copyright © 2024 NetRise, Inc.

Supply Chain Visibility & Risk Study

Edition 2: Containers; Q4 2024

18

Glossary of Terms

CISA KEV - The Cybersecurity and Infrastructure Security Agency’s (CISA) Known Exploited
Vulnerabilities (KEV) Catalog is a compilation of documented security vulnerabilities that have been
successfully exploited, as well as vulnerabilities associated with ransomware campaigns.

CISO - Chief Information Security Officer.

CVE - The Common Vulnerabilities and Exposures (CVE) system provides a reference method for
publicly known information-security vulnerabilities and exposures.

CVSS - The Common Vulnerability Scoring System (CVSS) is a free and open industry standard for
assessing the severity of computer system security vulnerabilities.

EPSS - The Exploit Prediction Scoring System (EPSS) is a data-driven effort estimating the likelihood
(probability) that a software vulnerability will be exploited in the wild.

IoT - The Internet of things (IoT) describes devices with sensors, processing ability, software and
other technologies that connect and exchange data with other devices and systems over the Internet
or other communications networks. The Internet of things encompasses electronics, communication,
and computer science engineering.

IT - Information Technology.

NVD - The National Vulnerability Database (NVD) is the U.S. government repository of standards-
based vulnerability management data.

SBOM - A “software bill of materials” (SBOM) has emerged as a key building block in software security
and software supply chain risk management. An SBOM is a nested inventory, a list of ingredients that
make up software components.

XIoT - The extended internet of things (XIoT) is an umbrella term that includes all internet of things
(IoT) or physical devices connected to the internet. It encompasses networking equipment, IoT,
operational technology (OT), internet of medical things (IoMT), industrial IoT (IIoT), and supervisory
control and data acquisition (SCADA).

